Think back to the Tangent Line Problem introduced in sect. 1.1.

Illustration:

The slope of the *secant line* on *f* between x and $x + \Delta x$:

This is the	rate of change for f or	the interval [x, $x + \Delta x$].
		· · · · · · · · · · · · · · · · · · ·

The slope of the *tangent line* on *f* at *x*:

This is the	rate of change for f at x .
-------------	---------------------------------

*This is given a special name: the _____ of f.

Notation:

General form:	At a specific point $x = c$:

To find the instantaneous rate of change (______), we need to compute this limit, either in general, or at a specific *x* value.

-example- Find the slope of the function f(x) = 3x - 4 at any point (x, f(x))

-example- a. Find the slope of the function $f(x) = x^2 - 2x$ at any point (x, f(x))

- b. *Now, find the slope of the tangent line at x = 3
- c. Write the EQUATION of the tangent line at that point.
- d. Determine the value(s) of x for which the function would have a horizontal tangent line.

-example- Find the equation of the line tangent to the curve $f(x) = \frac{1}{x+2}$ when x = 1.

SKETCH the graph and draw in the tangent line:

II. Differentiability. A function is said to be *differentiable* at a point x = c if the derivative exists at that point. Since the derivative is defined as a limit, then both the right and left hand limits would have to be the SAME for the derivative to exist.

*A function is NOT differentiable at any point x = c if:

1. It is not CONTINUOUS at that *x* value.

-example-
$$f(x) = \frac{1}{x-2}$$

*NOTE: Differentiability implies continuity. The reverse is not true.

2. The curve becomes VERTICAL at that *x* value.

-example- $f(x) = x^{1/3}$

*NDERIV feature on Calc:

3. The curve has a SHARP POINT at that *x* value.

-example- f(x) = |x+1| + 2

*A function is differentiable at a point if it has *local linearity*.